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The propagation problem for electromagnetic waves in a smoothly inhomogeneous locally isotropic
medium, which was considered for a layered case in V. S. Liberman and B. Ya. Zel’dovich, Phys. Rev.
E 49, 2389 (1994) is generalized to a three-dimensional situation. Effective “linear” birefringence,
i.e., coherent transformation of a right circularly polarized wave into the left one with the amplitude
~ (A/a) is predicted and calculated. It corresponds to the corrections én ~ (A/a)? to the effective
refractive index tensor, where a > A is the size of smooth inhomogeneity. An important feature is
that linear birefringence appears only in the presence of gradients of impedance p(r) = /u(r)/e(r),
whereas the gradients of refractive index n(r) = 1/e(r)u(r) are not necessary in a general three-
dimensional case. This is in contrast with a layered medium (one-dimensional case) where the net
effect was proportional to the product (d In p/dz)(d Inn/dz).

PACS number(s): 42.15.—i

I. INTRODUCTION

A novice’s idea of geometric optics, “propagation of
light along straight rays,” deals with the case of a ho-
mogeneous medium only. Such an approach is useful if
there are sharp boundaries between two regions (e.g., air
and glass) so that the problem of solving Maxwell equa-
tions is reduced to matching two or three plane wave
solutions with the use of Snell’s law, Fresnel reflection,
and transmission formulas. The situation is somewhat
more complicated when the refractive index n(r) of the
medium smoothly varies in space. In that case the rays
are deflected in a gradual way. Well-known ray equations
are [1-3]

dr
;17_5’ (1)
ds
E:Vlnn—s(s-Vlnn), (2)

where s is the direction vector of the photon momentum,
s =p/p, | s|=1, and ! is the length measured along the
trajectory. Throughout the paper we shall consider the
medium with locally isotropic dielectric €;; and magnetic
Lir susceptibilities,

cie(r) = e(r)dik,  par(r) = p(r)dix , )

and assume that the spatial size a of inhomogeneities in
e(r) and p(r) is much larger than the wavelength \/2mx.

The condition a > A along with the corresponding as-
sumptions about the properties of the incident waves con-
stitute the requirements for the applicability of geometric
optics, or the WKB approximation. In that approach the
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phase of a wave is accumulated along the trajectory with
the rate wn/c, so that [1-3]

1

w

olr) — plro) =2 [ n(e@))ar . (4)
]

Taking [ — lp about the inhomogeneity size, | — [y ~ a,

one gets the estimation of the basic contribution (4) to

the phase

[o(r) — p(ro)]® = (Ma) > 1. (5)

A natural question arises about a more accurate calcu-
lation of the wave’s phase, i.e., about the corrections of
the order (A/a)® and (\/a)! to the basic expression (4).
Common opinion is that one should consider the three-
dimensional Schrédinger-type (or Helmholtz) scalar wave
equation

A¥(r) + ‘ic’;nz(r)\lz =0. (6)

Then the well-known phase shift Ap = —7/2~ (A/a)®
appears due to each passage of a ray near a caustic sur-
face; the number of such passages is connected with the
Maslov index of the ray’s manifold [4, 5].

We would like to emphasize a fact that was understood
at least by the beginning of the 20th century. Namely,
the question about the phase with such precision is sense-
less for electromagnetic waves if one does not specify the
polarization of the wave for which that phase is to be
calculated (or measured). For the specific case of planar
trajectory the transverse character of polarization allows
us to choose two natural polarization unit vectors. One of
them is e, , i.e., perpendicular to the plane of trajectory,
and the other is ) = e, X s, i.e., lying in the trajectory
plane, but orthogonal to the propagation direction s at
each point of the ray r(l). Here and in the following by
polarization we mean the direction of the complex vector
amplitude E(r) of the electric field
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Ereat(r, ) = %[E(r) exp(—iwt) + E*(r) exp(iwt) ], (7)
since in the visible range optics e —1 # 1 and p—1 = 0.
The choice of magnetic vector would be equally suitable
for that purpose, but we will not use it due to our “optical
roots.”

It may be shown that the phase corrections ~ (\/a)®
for E; and E, are just the same as for the scalar
Helmbholtz-Schrédinger equation (6), i.e., are connected
with the passages past caustic surfaces and with Maslov
index [4-6]. However, for the general case of a trajectory
possessing helicity there is no evident choice of the two
basic polarization vectors in a continuum of planes per-
pendicular to continuosly varying propagation direction
s(l). There is an especially clear discussion of that fact
in the paper [7]. The evolution law of the polarization
vector was established in [8-10] (see also [1,2]) and con-
sists in a so-called “parallel transport:” let us try not to
change the polarization vector e since the medium is lo-
cally isotropic; the only changes that we must introduce
are those which keep the polarization transverse to the
new propagation direction

de ds
= sfe. B 8
di S("’ dl)’ ®

so that (e-s) = 0 at any [, if (e - s) was equal to zero at
the starting point.

In the Russian scientific literature that “parallel trans-
port” evolution is called sometimes “Rytov’s rotation” [9,
2], meaning some very particular (Frenet) choice of az-
imuthal position of coordinate system versus [. As clearly
explained in (7], that choice is not always the best one
(not to say anything derogatory about Rytov’s work [9]).

Right circular polarization e = (e, + ie,)/V/2 for s =
e, stays of the same circular type during the propagation
according to Eq. (8) and acquires some additional phase.
Since the unit vector (e, + iey)/\/i gets a phase factor
(e, + ie,) = exp(—ia)(e, + iey) under the coordinate
system rotation e, = e, cosa+eysina, e, = —e,sina+
ey cosa at an angle a, the additional phase of circularly
polarized wave depends explicitly on the particular choice
of the frames continuum; see [7]. The additional phase
factor for the left circular polarization also depends on
that choice. Parallel transport Eq. (8) may be described
as “circular birefringence” dny — dn_ ~ (A/a)!, so that
the change of polarization at a distance a is about 100 %,
i.e., about 1 rad. However, the conservation of circularity
type means that the input linear polarization stays linear
in that approximation. In other words, initially real e
stays real after the evolution according to Eq. (8). The
invariant value of the rotation angle may be determined
only in the case when s(ly) = s(l1); that rotation angle
is expressed via the geometrical Berry phase [11], i.e.,
via the phase difference for the two circularly polarized
components; see also [8, 10, 12].

Berry’s phase or parallel transport is the influence of
the trajectory on the polarization. The back influence
of circular polarization on the trajectory [13,14] may be
described by the modification of Eq. (1):
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%:s-}—(‘%a[sxg] (9)
and was called the “optical magnus effect” in [14]. Here
o = +1 for the right circular polarization and o = —1
for the left one. Both effects may be considered as the
consequence of a spin-orbit interaction of a transverse
wave in an inhomogeneous medium [15].

Going back to the wave’s phase, one comes to the con-
clusion that in the approximation taking into account
én ~ (A/a)! terms, the WKB solution of the Maxwell
equations is given by the corresponding solution of the
scalar Helmholtz-Schrodinger equation (6) multiplied by
the polarization vector e taken from Eq. (8). This state-
ment will be proved explicitly below. An important fea-
ture of such an approximation is that it is determined by
the profile of refractive index

e(r)u(r) (10)

only and does not depend on € and y separately. In other
words, that approximation deals with the geometry of
the rays only and not with the electrodynamics in par-
ticular. For example, the transverse acoustical waves in
locally isotropic smoothly inhomogeneous medium must
show similar “geometric” properties. At first sight the
calculation of higher order corrections §¢ ~ (A/a)! or
dneg ~ (A/a)? seems to be a very dull job, since in al-
most any complicated case our knowledge of the par-
ticular profile of the refractive index is not very good
and must introduce much larger error into the result.
However, just for the transverse electromagnetic waves
in a locally isotropic medium the main (large) part of
the phase uncertainty due to poor knowledge of n(r) is
identical for two degenerate polarizations. Therefore a
small effective “linear” birefringence nj —n, ~ (A/a)?
gives a qualitatively new physical effect: partial trans-
formation of right circular polarization into the left one,
transformation of linear polarization into weakly ellipti-
cal polarization. Both those effects may be easily mea-
sured in optics.

Such a birefringence was calculated in [16] for a re-
stricted case when both &(r) and u(r) depend on one co-
ordinate z only—the so-called layered medium. It turned
out that, contrary to the purely geometric “circular” bire-
fringence ény — dn_ ~ (A/a), the linear one is about
dn ~ (A/a)? and is determined by both refractive index
n(r) and impedance p(r) profiles; here

p(r) = V/a()/e() - (11)

The present paper is devoted to the calculation of ef-
fective birefringence én ~ (A/a)? or dp ~ (A/a)! for
a general three-dimensional problem. It turns out that
extra dimensions introduce qualitatively new features to
the resulting birefringence.

n(r) =

II. MAXWELL EQUATIONS
FOR AN INHOMOGENEOUS MEDIUM
IN TERMS OF HELICITY AMPLITUDES

We adopt the following system of Maxwell equations
for complex amplitudes of monochromatic fields:
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rotE = z"—uc—pH(r), rotH = —i%eE(r) (12)
so that the equalities div(eE) = div(uH) = 0 are the
consequences of (12). Useful combinations of those fields
are

A@) = ﬁE(r) +iVpMHE) , (13)

1 .
B(r) = —mE(r) —iy/p(r)H(r) . (14)

It is worth noting that E and H are complex vectors and
therefore A # B*. Direct substitution of (13) and (14)
into (12) yields

rotA = k(r)A — %G xB, (15)
1
rotB = —k(r)B — §G x A . (16)
Here and below we need two vectors
G = Vnp(r), L =Vian(r), (17)
kte) = ) a)

with ¢ being the speed of light in vacuum. It is interesting
to note that the Poynting vector S = (¢/167)(E* x H +
E x H*) takes a very simple form in terms of A and B:

. C o A

If the medium is homogeneous, p = const, £k = const,
and L = G = 0, then the solutions of the Egs. (15) and
(16) are very simple. For example, circularly polarized
plane waves are

(ez +iey)

exp(—iwt)A(r) = Ao 7

exp(ikz — iwt) , (20)

exp(—iwt)B(r) = Bo(ia"—le!"—) exp(tkz — iwt) . (21)
V2

An arbitrary solution may be written as a superposition
of such plane waves with various propagation directions
[instead of e, in (20) and (21)]. In particular, the so-
lution A(r) # 0, B(r) = 0 corresponds to purely right
circularly polarized waves, similarly A(r) =0, B(r) # 0
is a left circular polarized wave.

If K = k(r) # const, then a plane wave suffers some
scattering and deflection by inhomogeneities. We will
consider the problem where £k — const and p — const
both in the regions of incident and deflected waves; those
limiting values kj,. and kgqer may be different, as well
as Pinc and pdes. A remarkable feature of the Maxwell
system (15) and (16) is that for a general inhomogeneous
medium (k # const) possessing constant impedance p =
const, an incident right polarized wave [A(r) # 0, B(r) =
0] will stay so with 100 % accuracy.

Birefringence may be considered as a transformation

from one circular polarization into the other, A — B
and vice versa B — A. We are interested in a situation
when such a birefringence is small, e.g., §4 ~ (A\/a)B
or dneg ~ (A/a)?. At first sight, the right-hand side of
Egs. (15) and (16) allows us to consider that mixing as
an effect

=L~ (Ma) (22)

in contradiction with the expectations described in the
Introduction. Here the caret over the 7t symbolizes the
anisotropic contribution to 6¢ and 64 . Actually the esti-
mation (22) is incorrect. To show that explicitly, we can
take into account a consequence of Egs. (15) and (16):
divA =

(GB)—(LA), divB = %(GA)—(LB) .

1
2

(23)
That allows us to get second-order equations for A and

B:

AA +k?A +2V(LA) — %GZA —(LV)A - (AV)L
- —;—B(LG —divG) + (BV)G — (BL)G , (24)
AB + kB + 2V(LB) - ;G’B - (LV)B — (BV)L

- %A(LG —divG) + (AV)G - (AL)G . (25)

According to (24) and (25), the connection between two
circular components A and B turns out to be the effect
of the order
in VG L-G 2
o Y e~ (e (26)

However, the particular calculation of the effective bire-
fringence, or B — A mixing, will be done below with the
use of the first-order system (15) and (16).

III. WKB OR GEOMETRIC OPTICS NOTATIONS
FOR THE SOLUTION OF MAXWELL
EQUATIONS

Here we shall introduce the notation of the WKB ap-
proximation or geometric optics which will be used for
the asymptotic solution of Maxwell equations with the
necessary accuracy; see, e.g., [17,1,3,6]. With this aim in
the mind, we will consider the real eikonal function ¥ (r)
(with dimensions of radians), which satisfies the equation

Ve = ) = () (21)

The unit tangent vector s to a ray trajectory is defined
as
Vi

s=E(r—), |s|=1. (28)
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Subsequently we will use the derivative along the trajec-
tory

L =(s-V). (29)

Here and below we assume that some wave front surface
is defined by the equation ¢ = const. Then Eq. (27) may
be solved along the rays:

d

b =k(r) (30)
The trajectories r(rg,!) are defined by the Eq. (1),
whereas Eq. (2), or

ds
dl

is the consequence of the definition (28) and eikonal equa-

L-s(s-L), (31)

tion (27). The value of divs characterizes the rate of
change of the “ray tube” cross section Siupe,

dStube .

% = —Siubedivs , (32)
so that one could expect the energy conservation theorem

(| A > +]| B |?)Stube = const (33)
or

ar 1
A, B ~ exp(-T), i Edivs . (34)

Besides, we may choose two circular polarization vectors
a and a*, which are perpendicular to the local propaga-
tion direction [compare with Egs. (20) and (21)]; they
satisfy the conditions

(a-a)=(a*-a*) =0,

(a-s)=(a"-s) =0, (35)
(a-a%) =1,
axs=z1a, a*xs=—ia", a* xa=1s. (36)

If we suppose that the vectors a and a* obey the parallel
transport equation (8), or

da da*

8B _ _s(a-L =

a ~ sk dl
then the properties (36) will stay true in the whole three-
dimensional space. Besides, the following properties of
that system of vectors will be useful in the following:

=-—s(a*-L), (37)

1
—a* -rota=a-rota* = iidivs , (38)

rots =s x L, s-rota=1i(diva+a-L). (39)

The particular choice of the field of the vectors a,a* at
the “initial” wave front surface is equivalent to some par-
ticular choice of a field of “azimuthal” lines on that sur-
face. The change from one azimuthal field to another
may be characterized by the local rotation angle dp(u,v),
where v and v are some coordinates on that surface.
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In that case apew(u,v) = explidp(u,v)] - a4(u,v) and
a*new = exp[—idp(u,v)] - a*,qa. We assume that the az-
imuth field is chosen in such a way that the derivatives of
a* and a are about of inverse size of the inhomogeneity
(the latter unfortunately was also denoted by the letter
a in this paper). Now we will look for the solution of
Egs. (15) and (16) in the form

A(r) = [Ao(r)a(r) + A1 (r)a”(r) + As(r)s(r)]

x exp[iy(r) — I(r)] , (40)
B(r) = [Bi(r)a(r) + Bo(r)a(r) + Bs(r)s(r)]
x exp[iy(r) — T'(r)] . (41)

Substituting (40) and (41) into (15) and (16) and mul-
tiplying the result by a*, a, and s, we obtain the ex-
act system of six complex equations of first order in the
derivatives

(s-V)Ag+i(a” -rota*)A4; + [a* - (L + VI — V)]4g

- %[(a* .G)Bs - (s-G)By], (42)

( 1
Al — é—k(s . V)Al - ﬁ-(a-rota)Ao

¢

spla (L+ VI - V)45

= :}E[(s -G)By — (a-G)Bs], (43)

As + %[a- (VT — W) +i(s - rot a)] Ao
~ I%[a* (VT = V) —i(s - ot a*)] 4
= %[(al.c;,)B1 —(a*-G)Bo|, (44)
(s-V)By —i(a-rota)B; + [a- (L + VI — V)|Bs
- %[(a.G)AS ~(s-G)A)], (45)

i 1

By~ (s V)By + 5-(a" -xota®) Bo
~-2£I;[a’ (L + VT - V)]Bs
= L[ G4~ (a"- G)4s], (46)
Bs — %[a- (VT — V) +i(s - rot a)] By
+ila* . (VD = V) — i(s - rota*)] Bo

|

- gg[(a* .G)A; — (a-G)Ao] . (47)
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Almost everybody (but not us) would say that this sys-
tem is much more complicated than the original Maxwell
system in Cartesian coordinates. However, Egs. (42)-
(47) allow us to produce an asymptotic expansion of the
solution.

IV. PARALLEL TRANSPORT

Let us make an assumption (the validity of which is
confirmed by subsequent calculations) that the ampli-
tudes A,,As and B1,Bgs are of the first order in the sense
of the small parameter (A/a) in comparison with zero-
order amplitudes Ay and By. In that approximation we
see that those zero-order amplitudes propagate indepen-
dently with conserved values along the rays:

dAo _ 2
—J = (s . V)Ao(l‘) o~ O(A/a) )
(48)
dB, _ ~ 2
— =(s-V)Bo(r) ~ 0(\/a)* ,

as it should be in standard scalar geometric optics.

V. EFFECTIVE BIREFRINGENCE

Equations (43), (44), (46), and (47) allow us to find
the values of A;, As, B;, and Bs up to an accuracy of
first order in (A/a):

1 i
A= Z—E(a -rota)Ao + E(G -s)By ,

(49)
As:__;';[a.(vr‘—V)+i(s-rota)]Ao
—é%(G-a‘)Bo,
Bi= -2 (a*-rota*)Bo + (G -s5)A
L= 2k(a -rota*)By yy s)Ap ,
(50)

Bs = __i:_[a* - (VL = V) —i(s-rota*)]|By
)
—ﬁ(G M a)AO .

Back substitution of those expressions into Egs. (42) and
(45) allows us to get the coupled equations for “large”
amplitudes A9 and By only, but now with the accuracy
~ (A/a)? included.

We are not going to study all the terms of that order
in this paper. Among other effects, they include trans-
verse diffraction in parabolic approximation and the op-
tical magnus effect. Concentrating on the effects of linear
birefringence, we will consider here only the terms ~ G
which lead to the coupling between Ag and By. In that
approach, after rather lengthy calculations, one obtains
the quite simple looking result

dAg

= =—ﬁBo-[a"(a‘-V)G—Z(G-a‘)(L-a‘)] ,

(51)
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dB,

dl
To compare this with the “usual” birefringence, we sup-
pose for a moment that the tensors of dielectric and mag-
netic susceptibilities are not as in Eq. (3), but instead
they are equal to

— —ﬂAo-[a(a'V)G—2(G'a)(L'a)] . (52)

Eik = €0ik + 0€ik, flik = ulix + Ofdir . (53)

In that case the basic equations take the form (in first
order in §¢ and 61)

06 i 1 6  op
= — + = - B+k|{——--—1]B,
rotA =k (1 + % + 2#) A 2G>< + (2€ 2
(54)
rotB = -k 1+6—€+6—“ A—EGXA
2e  2u 2
68 i
-k (2—6 - 2—};) A . (55)
Then neglecting the G term we obtain
dAy . . . (66 i .
7 - Z(Sk()Ao = lkBo [a (28 2#) a ] 5 (56)
dBy . . 66 b4
7 - ‘L(SkgBo —’LkAo . [a- (% - E) ’8] . (57)
Here dkq is the isotropic addition to the wave vector
06 i
—ka* [ —+-L2).a. 5
O0ko = ka (2:—: + 2“) a (58)

Since we assume that 6 and §i1 are symmetric tensors,
we may rewrite (58) as

6k0=§’1‘r[(§§+g—Z) (i—s®s)] , (59)

where (s ® s)ir. = s;sr and Tr stands for the trace of the
tensor. Comparing Eq. (50) with (54) we see that the
birefringence due to smooth gradients of medium prop-
erties is equivalent to

(=-%)
€ K

_ 1 8% Inp _Olnpdlnn Olnpdlnn
" k2 \ 8z;0zy 8z; Oz 8z, Ozx; )

(60)
This is the main result of the present paper.

VI. DISCUSSION

First of all, one sees from (60) that the effective bire-
fringence vanishes if p = const in the medium, i.e., if
G = Vinp = 0. However, for the case when n =const
the birefringence may be nonzero due to the term ~
(8%1n p/8z;0x). Moreover, if the changes of €, u, n,
and p are rather small, de < ¢, du < p, then the terms
~ (0lnp/0z;)(8Ilnn/dz;) are smaller than the second
derivative term in Eq. (60) by a factor (én/n).
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It is interesting to compare Eq. (60) with the result
for effective birefringence obtained earlier in [16] for the
one-dimensional case (layered medium), n = n(z), p =
p(2z). The calculation of the phase difference between the
Ee**="e, polarized wave and the He'*:®e, polarized one
using Eq. (60) allows us to obtain

(05 — on) = +°°dl ¢B? dlnndlnp
YE~ ¢H oo 2wn3y2 dz dz

+oo 2 2
:/ dl£ (d lnp_zdlnndlnp)

oo 2wn \ dz? dz dz
_ [t ¢ (d®hp dlnndlnp
:/_oo dl2_w< dz2  dz dz ) - (61)

Here k, = wf/c =const,

B =sinai, Y(z) =+1—p6%2/n2(z) =cosa(z), (62)

where a(z) is the current angle between the propagation
direction and z axis, so that dz/dl = y(z). We see that
the expression following from the present paper’s result
(60), i.e., the second line of the Eq. (61), is identical to
the one-dimensional result from [16], i.e., to the first and
third lines.

For the one-dimensional case birefringence is accu-

A. YU. SAVCHENKO AND B. YA. ZEL’'DOVICH 50

mulated along the ray if both the refractive index and
impedance are inhomogeneous. Beside that, it means
that ¢ ~ (0n/n)%()/a) for the one-dimensional case, as
opposed to the general three-dimensional situation. It is
worth mentioning that g = 1 in optics of visible light,
and therefore In p(r) = — Inn(r).

The estimation of the size a ~ 10(A/27n) = 1 pm at
Ao = 0.6 pm and n = 1.5 and for refractive index step
én = 0.15 gives dp ~ (dn/n)%(A/a) ~ 1072 rad. We hope
that such a phase difference can be easily measured by
the methods of modern ellipsometry [18-20]. A smooth
gradient of the refractive index may be obtained, e.g.,
via diffusion through a boundary between two mutually
solvable liquids with different refractive indices.
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